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ABSTRACT 
Online games can serve as research instruments to explore 
the effects of game design elements on motivation and 
learning. In our research, we manipulated the design of an 
online math game to investigate the effect of challenge on 
player motivation and learning. To test the “Inverted-U 
Hypothesis”, which predicts that maximum game 
engagement will occur with moderate challenge, we 
produced two large-scale (10K and 70K subjects), multi-
factor (2x3 and 2x9x8x4x25) online experiments. We found 
that, in almost all cases, subjects were more engaged and 
played longer when the game was easier, which seems to 
contradict the generality of the Inverted-U Hypothesis. 
Troublingly, we also found that the most engaging design 
conditions produced the slowest rates of learning. Based on 
our findings, we describe several design implications that 
may increase challenge-seeking in games, such as providing 
feedforward about the anticipated degree of challenge.  
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INTRODUCTION 
In previous periods of educational game development there 
were few studies regarding the effectiveness of games [6, 
14]. However, contemporary games have the benefit of 
networked data collection and large online audiences. As a 
result, contemporary educational games permit large-scale 
online experiments investigating the effects of game design 
factors on both motivation and learning.  

Measuring the effects of design elements (such as time 
limits, animations, or reward settings) on motivation can be 
relatively straightforward. In an experimental design with 

random assignment, if one version of a game results in a 
greater duration of voluntary play, it may be described as 
more intrinsically motivating or more engaging. For 
instance, Tom Malone’s early game research [11] involved 
the progressive removal of design elements from games and 
measuring differences in the average amount of time 
children spent on the different game versions. 

Recently, Andersen et al. [2] demonstrated that online 
games can be an excellent laboratory for investigating 
motivation and its measurable outcome, player engagement. 
They quantified player engagement as the total time spent 
playing a game and as the number of game levels 
attempted. Then, the researchers randomly assigned 
thousands of game players to a series of A/B tests varying 
different design elements. They found, for instance, that 
music had no significant effect on engagement, celebratory 
animations had some positive effect, and the presence of 
“bonus coins” (an optional challenge) had a strong negative 
effect on engagement. This last finding was surprising, as 
the longstanding belief was that bonus challenges would be 
appealing to players (and make them play longer). Their 
study demonstrates how online experiments can be used to 
empirically test common hypotheses regarding the effects 
of design on motivation.  

CHALLENGE SEEKING IN GAMES 
One interesting aspect of games is that their challenge is a 
motivating force [12,18,20]. In everyday life, people might 
be expected to minimize challenge—unless, of course, the 
challenge leads to greater rewards. While software design 
portrays “ease of use” as an essential quality, game design 
is based on the idea that players seek challenge.  

How do games promote this challenge-seeking behavior? 
And why would anyone seek a challenge? In many cases, 
greater challenges lead to greater rewards, both tangible and 
intangible. For instance, one may chose a challenging 
activity if success in that activity leads to a greater 
status,(as in a sporting match). Status is a key motivational 
element in games and also in educational environments 
(e.g., scores, grades and teacher reports). Because status 
and challenge will often correlate, we question whether 
challenge alone would be motivating. 

Why would someone engage in a more challenging activity, 
if a less challenging activity leads to a perfectly equal 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, 
or republish, to post on servers or to redistribute to lists, requires prior 
specific permission and/or a fee. 
CHI 2013, April 27–May 2, 2013, Paris, France. 
Copyright © 2013 ACM  978-1-4503-1899-0/13/04...$15.00. 
 

Session: Learning CHI 2013: Changing Perspectives, Paris, France

89



  

reward? Several theorists have suggested that completing 
challenging tasks brings greater internal rewards than 
completing easy tasks [7,9]. For instance, children will 
smile more after completing longer, more difficult word-
scramble puzzles [7]. This pleasure is believed to arise from 
one’s enhanced sense of self-efficacy or the sense of 
competence [4] that comes from the accomplishment.  

Under this explanation, it is the successful completion of a 
challenging task that is more satisfying—not the act of 
doing something challenging. Still, a significant body of 
evidence indicates that, if given a choice, people will 
choose moderately difficult activities over activities that are 
very easy or very hard [7,17,1]. Moreover, there is evidence 
that people enjoy doing activities with moderate levels of 
challenge, not just completing them or choosing them. For 
instance, using Experience Sampling Methods to interrupt 
individuals’ daily activities, Mihaly Csikszentmihalyi [1] 
found that people report high levels of enjoyment during 
challenging tasks; he characterized this enjoyment as a 
conscious phenomenon called  “flow.” The construct of 
flow and “flow states” have been widely adopted in theories 
of game enjoyment [20,12 ,21,18].  

Recently, Abuhamdeh and Csikszentmihalyi sought to 
experimentally test the idea that optimal enjoyment occurs 
during moderately challenging activities [1]. They describe 
the idea in terms of an inverted-U: “…the notion that we 
most enjoy optimally challenging activities that are not too 
easy or too difficult implies a curvilinear, inverted U-
shaped relation between difficulty and enjoyment, so that 
increases in difficulty should lead to increases in enjoyment 
up to an optimal level (i.e., the apex of the curve), after 
which further increases in difficulty lead to decreases in 
enjoyment.”  

To explore this “Inverted-U Hypothesis”, Abuhamdeh and 
Csikszentmihalyi conducted a large-scale observational 
study of online chess players [1]. They quantified the 
challenge of each game as the numeric difference between 
the international chess ranking of two players. Enjoyment 
was measured through a survey taken by players 
immediately after each game. Their results showed that the 
greatest enjoyment occurred when players faced an 
opponent with a higher chess rating, but not too much 
higher. This provided strong evidence to support the 
Inverted-U Hypothesis.  

Notably, the authors identified another factor governing the 
enjoyment of individual games: regardless of the difference 
in chess ranking or who won, players reported feeling 
greatest enjoyment while playing “close games.” A closer 
game is one that ends with a smaller difference between the 
point value of the pieces taken by each player. Therefore, 
when the difference in points was minimal, and the 
outcome was most uncertain, players reported that the game 
was most enjoyable. This finding supports previous theory 
and evidence [3,18,12] about the motivating nature of 
uncertain outcomes. 

Applying the Inverted-U Hypothesis to Online Games 
The Inverted-U Hypothesis seems appropriate for 
predicting the effect of challenge on player motivation in 
videogames. Indeed, many game design guides [5,18,20] 
and psychological theories [1,3,4,8,17,13,20,21] suggest 
that optimal engagement will occur at a moderate level of 
difficulty. However, there is little guidance about precisely 
how difficult a game should be.  

In our research, we use large-scale experimentation to test 
the Inverted-U Hypothesis in an educational game context. 
We seek to determine whether there is a particular degree of 
challenge that optimizes player engagement. To identify the 
optimal level of challenge, we randomly assigned players to 
different design configurations and modeled the effect of 
the varying challenge on player motivation. The Inverted-U 
Hypothesis predicts that engagement will be highest at a 
moderate level of challenge, neither too hard nor too easy 
(Figure 1). In these studies, we operationalized challenge as 
the probability of success [3,17] and motivation as the 
duration of voluntary game engagement [2,12]. 

 
Figure 1: The “Inverted-U Hypothesis” suggests that optimal 

engagement (measured as duration of voluntary play) will 
occur at a single intermediate level of game challenge 

(measured as probability of success). Factors that increase or 
decrease challenge from this level should reduce engagement. 

ONLINE EXPERIMENT 1 
To document the relationship between difficulty and 
engagement, we used Battleship Numberline, an online 
Flash game where players attempt to explode target ships 
and submarines by estimating numbers on a number line. 
Classroom experiments have shown that the game produces 
significant improvements in number line estimation 
accuracy after only 20 minutes of game play [11].  

On the basis of the Inverted-U Hypothesis, we anticipated 
that a manipulation of the difficulty of the game from very 
easy to very hard would produce an inverted U-shaped 
effect on engagement. To manipulate difficulty in the game, 
we varied two different design factors: target type and 
target size.  

Target Type 
The target type can be either a visible ship or a hidden 
submarine. With the visible ship (see Figure 2), a battleship 
is visible on the number line and players need to type a 
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number that approximates its location. With the hidden 
submarine target, players are instead presented with a 
number indicating the location of the hidden submarine; the 
player then needs to click on the location of the number line 
that they believe corresponds to the number provided. Both 
the task of locating a given number on a number line and 
the task of naming a given location on number line are 
educationally relevant practice activities that may vary in 
their challenge.  

Target Size 
A larger target is easier to hit; estimates can be less accurate 
and still be successful. Therefore, the target size can be 
described in terms of “error tolerance”, where a higher error 
tolerance indicates a larger target (Figure 2).  

Take the case of a player estimating the location of a 
submarine that is “spotted at 20” on a number line from 0-
100. If the player clicks on the number line location 
corresponding to 29, their estimate would have a 9% 
error—and an accuracy of 91%. If the target were larger, 
20% of the length of the number line (an error tolerance of 
10%), the estimation attempt would be successful. 
However, if the target were smaller (10% of the line or 5% 
error tolerance), the estimation attempt would miss the 
submarine. As a result, increasing or decreasing the size of 
the ship greatly affects the challenge of the game. 

 
Figure 2: The left image shows the game’s original ship that is 
10% of the number line (5% error tolerance). The ship on the 
right is 40% of the line (20% error tolerance), which seemed 

simply too easy. 

Game Design 
Players are either presented with a visible ship or a number 
indicating the location of a hidden submarine. Once the 
player has typed in their estimate (in ship mode) or clicked 
on an estimated location (in submarine mode), a bomb falls 
at that location on the number line. If the bomb hits the 
target, there is a satisfying explosion and a gold star is 
released, incrementing the player’s star count in the 
scoreboard. If the player misses, the bomb splashes in the 
water and corrective feedback is displayed along with the 
accuracy of their estimate. A running tally of the player’s 
average accuracy is displayed in one corner of the screen 
and a count of the number of stars collected on the other. 
There is no final “winning” or “losing” state in the game—
instead, players can continue to play as long as they wish. 
Additionally, there are no leaderboards or other 
mechanisms that allow players to directly compare status. 

 

Experimental Design 
To explore the effect of challenge on engagement, we 
constructed a 2x3 between-subjects experiment involving 
target size (error tolerance of 3%, 5% and 10%) and target 
type (ship or submarine). The experiment took place among 
players who had chosen to estimate whole numbers. In all 
conditions the players received the same 20 whole number 
estimation items (between 0-100) in random order; at the 
end of this set, the items would be repeated in another 
random order. Players had the option of dropping out at any 
time but the total number of trials was capped at 80 trials. 
The time limit for the ship condition was 15 seconds and 10 
seconds for the sub condition.  

Measuring Challenge and Engagement 
Our operationalized measure of challenge was the estimated 
success rate of each game configuration, where success rate 
is measured as the percent of successful estimates divided 
by the total number of estimates. Engagement was 
measured as the average duration of play in each condition, 
either as the total trials played (number of estimates 
attempted) or the total time played (sum of reaction times 
across estimates). 

Participants 
Battleship Numberline was made available on the GameUp 
platform on Brainpop.com, which is a popular site for 
classroom teachers in grades 4-8. The vast majority of play 
occurred during school hours, with large drop offs during 
weekends and holidays. However, subjects were completely 
anonymous and were not tracked over time. As a result, the 
unit of experimental manipulation was on a game session, 
rather than a subject. A game session began when players 
clicked on one of the game choices (fractions, decimals or 
whole number estimation) and ended when players exited 
or made no further actions after a time-out. Each game 
session represented a unique experimental assignment and a 
single player could receive multiple versions of the game 
by exiting and starting over. While allowing the same 
individual to participate in multiple experimental 
assignments may appear to distort our data, the purpose of 
the experiment was to measure implicit user preference. 
Therefore, choosing to disengage from one condition and 
start another only enhances our measure of engagement. 

Approximately 1,000 game sessions were played per day, 
ranging from 200 per day over school holidays to 10,000 
per day when the game was “featured” by BrainPop. This 
scale made it possible to run a broad number of experiments 
simultaneously from the same subject pool. The data 
presented here is from one such experiment, which was 
conducted between 12/16/2011 to 3/8/2012 and involved 
10,478 game sessions. 

RESULTS 

Target Size 
As expected, bigger targets made the game significantly 
easier: the largest targets had an average success rate of 
63%  (sd=34%) while the smallest targets had a success rate 
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of 29% (sd=25%). The larger and easier-to-hit targets were 
also significantly more engaging, resulting in 34% more 
estimates and 18% more time spent than the smaller and 
more difficult-to-hit targets (See Table 1).  

While players take significantly less time to estimate the 
larger targets (p<0.001), there was no significant difference 
between the accuracy of their estimates (p=0.34). In other 
words, the larger targets did not appear to make players 
more careless in their estimates. 

Targ. 
Size 

 
N 

Total 
Trials 

Total 
Time 

Accur-
acy 

Success 
Rate 

React 
Time 

 
3% 

 
3462 

12.6 
(13.1) 

60.9 
(54.1) 

78.8% 
(26.5) 

29.2% 
(25.2) 

6.8 
(5.8) 

 
5% 

 
3479 

14.6 
(14.4) 

66.5 
(55.5) 

79.5% 
(26.0) 

43.3% 
(30.3) 

6.6 
(5.6) 

 
10% 

 
3537 

17.0 
(15.8) 

71.6 
(55.4) 

79.6% 
(25.6) 

62.8% 
(34.1) 

6.3 
(5.6) 

Table 1. Main Effects of Target Size (with standard deviation). 
3% is a smaller target than 10% and more difficult to hit. All 
differences are significant at p<0.001, except Accuracy, p=.36 

Target Type 
The main effects from the design factor target type (Table 
2) are contradictory, depending on how engagement was 
measured: the submarine target was significantly more 
engaging based on the number of trials (p<0.001) but the 
ship target was significantly more engaging based on the 
amount of time (p<0.001). As the ship target asks players to 
type an estimate on the keyboard, each trial takes more time 
than the click required for the submarine target. Still, given 
this contradiction, it is unclear which condition can be said 
to be more engaging/motivating. 

Targ. 
Type N 

Total 
Trials 

Total 
Time 

Accur-
acy 

Success 
Rate 

React 
Time 

Sub 5596 
17.0 

(16.2) 
60.3 

(53.8) 
84.8% 
(15.5) 

44.6% 
(32.1) 

4.1 
(2.5) 

Ship 4882 
12.2 

(12.0) 
73.3 

(56.0) 
73.0% 
(33.3) 

45.9% 
(34.2) 

9.3 
(6.9) 

Table 2. Main Effects of Target Type (with standard 
deviation). Sub involves clicking a location to estimate a 

number, while Ship involves typing a number to estimate a 
location. All differences are significant at p<0.001, except 

Success Rate, p=.05. The difference in N between subs and 
ships results from players quitting before completing one trial. 

Combined Scale for Measuring Engagement 
The amount of “time spent” and “challenges attempted” are 
useful measures of engagement [2], though they can 
sometimes contradict one another, as above. To resolve this 
contradiction, using a common psychometric practice, we 
created a combined measure that consists of the log 
transformation of the number of trials times the number of 
seconds of play (sum of reaction time). Though this 
combined measure of engagement has the limitation of making 
it more difficult to compare the units of engagement, it allows 

us to compare all design factors along a single scale. Notably, 
the scale balances the weight of both measures through a 
correlation with log(time) and log(trials) of .95 and .96, 
respectively. This measure corroborates that target size has a 
highly significant effect on engagement, but suggests that there 
is no significant effect of target type on engagement (p=0.57).  

Challenge as a Latent Variable 
To explicitly test the hypothesis that challenge has an 
inverted-U shaped relationship with engagement, we need a 
quantitative measure of challenge. Therefore, we used the 
average success rate of each of the six possible design 
configurations: the lower the observed success rate for a 
given level design, the greater the challenge it posed. This 
is similar to previous research that uses observed 
probability of success as a measure of challenge [3,9,17]. 

Figure 3 plots the relationship of challenge to engagement. 
In contrast to the Inverted-U hypothesis, our results show a 
linear relationship between difficulty and engagement (the 
quadratic fit was not significant, p=0.8). In short, the easier 
the game, the longer people played. 

 
Figure 3: Relationship of challenge (predicted success rate) 
and engagement. Quadratic line of fit shown as dotted line 
with surrounding confidence of fit. The line graph plots the 
specific average engagement at each level of difficulty with 

error bars representing one standard error. 

Discussion 
In contrast with the Inverted-U Hypothesis, experiment 1 
showed that challenge had a linear effect on engagement—
the less challenging, the longer people played. However, it 
is possible that the game was not made easy enough, given 
that the average success rate of the easiest conditions were 
still <70%; therefore, it is possible that we only measured 
the left side of the Inverted U.  

ONLINE EXPERIMENT 2: SUPER EXPERIMENT 
To further explore the Inverted-U Hypothesis, we 
developed a larger experimental design that involved 
additional game design factors, including time limits, item 
sets and item sequences. Additionally, as the challenge of a 
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game is likely relative to a player’s ability (i.e., players with 
a higher ability will have a higher probability of success), 
we included an in-game pretest to formally assess player 
ability prior to the experiment, as a covariate.  

Target Size and Target Type 
We significantly expanded the range of the target size as a 
percentage of the number line, including the following nine 
sizes: 4%, 6%, 8%, 10%, 16%, 20%, 24%, 30%, and 40%. 
We hypothesized that the very large ship sizes would prove 
trivially easy to players, resulting in an inverted U-shaped 
curve. We maintained the two different types of targets 
from experiment 1 (Ship and Submarine). 

Time Limit 
While the time limit in Experiment 1 was consistently 10 
seconds (and 15 seconds for ship targets), we tested 8 
different time limits: 2, 3, 4, 5, 8, 10, 15 and 30 seconds 
(ship targets included an additional 5 seconds). We 
hypothesized that very large time limits would further 
reduce the challenge of the game and allow us to detect 
declining engagement with increased success on the right 
side of the Inverted-U.  

Item Sets 
While Experiment 1 gave all players the same set of 
estimation items, Experiment 2 randomly assigned players 
to a broad range of item sets. An item set consists of the 
specific target numbers that are to be estimated over the 
course of a level. The item sets were constructed to vary in 
difficulty by using data from previous experiments to create 
bins of items with high and low success rates [19]. Item sets 
also varied in the number of items presented and the 
endpoints of the number line. Players were randomly 
assigned to an item set within the estimation domain of 
their choice. There were 8 whole number sets, 7 decimal 
sets and 10 fraction sets for a total of 25 different item sets.  

Item Sequencing 
In Experiment 1, all items were presented in random order. 
In Experiment 2, we also tested three additional sequencing 
algorithms. Naïve0 repeats incorrect items immediately (on 
the next turn), while Naïve1 and Naïve2 repeats incorrect 
items after a delay of 1 or 2 turns, respectively.  

Experimental Design 
The combination of the above design factors with an ability 
covariate (high or low pretest score), results in a 
2x2x9x8x4x25 between-subjects experiment with 28,800 
possible unique configurations. Our analysis focuses on the 
main effects and 2-way interactions of these factors.  

In-Game Pretest 
After players chose to play Fractions, Decimals or Whole 
Numbers, they received an in-game pretest consisting of 
four estimation items. To construct this pretest, we used 
previously collected online data [19] and applied Item 
Response Theory methods to select items that effectively 

discriminated between players of different abilities and also 
maintained high reliability with overall performance in the 
game. The pretests were reasonably successful, despite 
having only four items, achieving a .46 correlation with the 
hit rate in the experiment and reliability score (Cronbach’s 
alpha) of .62. If a player‘s pretest accuracy was above the 
median, they were labeled “high ability”; else they were 
labeled as “low ability.” 

Participants 
This experimental dataset consists of game log data from 
69,642 play sessions of Battleship Numberline that were 
collected from March 25, 2012 to May 4, 2012 from 
Brainpop’s GameUp platform. These were players who 
completed the 4-item pretest described above, which 
occurred prior to the randomization event. 

RESULTS 
In an ANCOVA, all five factors (target type, target size, 
time limit, item sets, and item sequencing) and the pretest 
score had a significant main effect on the game’s challenge 
and engagement (all p’s < 0.0001).  

Target Type 
Like study 1, we found that the submarine target was 
significantly more engaging (p<0.001) and less challenging 
(p<0.001) than the ship target. Differences in engagement 
between target types were greatest among low-ability 
players (first column in Figure 4). 

Target Size 
Surprisingly, the extremely large targets did not lead to less 
engagement than moderately sized targets (second column 
in Figure 4). As in study 1, the larger the target was, the 
greater the success rate and the greater the engagement.  

Time Limit 
Time limit had a significant effect on player performance 
and engagement (third column in Figure 4). Longer time 
limits increased both success and engagement. The impact 
was greatest for the shorter time limits such that the shortest 
time limits were the most disengaging of any design factor. 

Item Sequencing 
The manipulation of item sequencing showed a significant 
effect on player success rates, but a minimal effect on 
player engagement. Naïve0 repeated unsuccessful items 
immediately after their first presentation, which had the 
effect of significantly increasing player success relative to 
random sequencing, for both high and low-ability players 
(p<0.001). Despite the improved success rate, Naïve0 had a 
minimal effect on engagement. Only low-ability players 
found Naïve0 more engaging than random presentation. 
(p=0.024). This result shows that improving performance 
may not always increase engagement, particularly when the 
improved performance results from repetition.  
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Figure 4: The effect of four design factors and player ability on challenge and engagement. The dotted lines are players with pretest 
scores below the median, while solid lines are players with pretest scores above the median.  All four factors influence success rate 

and, in all cases, greater success is associated with greater engagement. Error bars show standard error of the mean.

Item Sets 
As suggested by the analysis of Item Sequencing, we found 
that increasing the total number of items presented to a 
player (decreasing repetition) had the effect of improving 
player engagement. Additionally, we found that increasing 
the challenge of item sets decreases player engagement. 

Item sets are the set of unique estimation items presented to 
players in a level. The analysis reported here focuses on a 
subset of fraction item sets (Figure 5). Based on previous 
data collection, we created an “Easy” set of 15 fractions, a 
“Hard” set of 15 fractions, and an “All Items” set that 
included easy, medium and hard items (45 total). We also 
deployed a set of 6 “Benchmark” fractions (1/2, 1/4, 2/4, 
3/4, 1/3, 2/3). Finally, this analysis included only high 
ability students, as low ability students were not as sensitive 
to the differences between these item sets.  

In the first and second columns of Figure 5, we control the 
number of items but vary the challenge. This shows that the 
easier (more successful) item set produced greater 
engagement. However, the third column seems to contradict 
this evidence, as the more difficult item set (“All Items”) 
achieves greater engagement. This could be evidence to 
support the Inverted-U hypothesis, as the moderately 
difficult level achieved more engagement than the easy or 
difficult levels. However, our comparison of the third and 
fourth columns refutes this interpretation. Here, the 
difficulty (success rate) was controlled while the number of 
items was varied. Looking back to columns two and three, 
this suggests that the greater engagement of “All” results 
from having a greater number of items in the level.  

We hypothesize that increasing the number of items 
increases engagement by increasing the diversity/novelty of 
the overall gameplay experience. This has support from at 
least one model of game entertainment [22], which 
postulates that diversity is one of the major factors 
accounting for the fun of games.  

 
Figure 5: The relationship of challenge to engagement in item 
sets. When controlling the number of items (from Hardest to 
Easiest), easier items are more engaging. When the challenge 
is controlled (from All Items to Benchmarks), having more 

unique items is more engaging.  

Challenge as a Latent Variable 
Following our approach in study 1, we estimated the 
challenge of each level configuration, where challenge was 
defined as the predicted success rate of a level (lower 
challenge has higher success rates). The estimates produced 
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by this model were used to plot the main effect of 
challenge, as a latent variable, on overall player 
engagement (Figure 6). 

 
Figure 6: Plotting the effects of challenge (predicted success 

rate) on player engagement. Graph shows quadratic line of fit 
and a smoothed mean (dotted line). This shows that as the 
predicted success rate increases (and challenge decreases), 

players are likely to play for longer. In contrast to the 
Inverted-U Hypothesis, low levels of challenge (high success 
rates) never appear to negatively affect player engagement. 

Success rate was predicted based on a multiple linear 
regression model, which included main effects of all our 
design factors (target size, target type, time limit, item sets 
and item sequencing) and the 2-way interactions between 
all the above design factors. To improve validity, this 
model was weighted by the number of trials played by each 
player. This produced a model with R2=.34. As a player’s 
ability (high/low) was expected to impact the predicted 
success rate of a level, we expanded our model by adding 
this factor and its interactions with the design factors. This 
improved the fit substantially, R2=.46. 

This model of challenge (predicted success rate), which 
involved all design factors and player ability, was used to 
produce the x-axis values in Figure 6. This graph illustrates 
the estimated engagement across the range of estimated 
challenge. As such, it shows that players are motivated to 
play for longer as the game gets easier. While the effect of 
game challenge is slightly curvilinear, it is not U-shaped – 
the model does not predict a point where low challenge 
reduces player motivation. Taken together, this evidence 
suggests that we may want to reject the generality of the 
Inverted-U Hypothesis. 

Analysis of Learning Curves 
What’s wrong with making the game very easy? One 
hypothesis is that low levels of challenge could reduce the 
rate of learning. To address this question, we operationally 
defined learning as improvement over time, or specifically, 

improvement in estimation error over the log of practice 
opportunities (log of opportunities is typically the x-axis in 
plots of learning curves, [15]), where error was measured as 
the absolute value of the estimated number minus the actual 
number, divided by the length of the number line [16].  

To address the question of whether players with large 
targets learned at a different rate than players with small 
targets, we plotted and compared their learning curves. To 
do so, we analyzed a subset of data that tracked each 
player’s entire sequence of estimation attempts. This subset 
consisted of 1392 players who were assigned to random 
sequencing and who played over 30 trials in the decimal 
domain. We only analyzed learning in their first 30 trials to 
prevent player attrition from significantly affecting the 
measurement of learning curves. To achieve greater power, 
we binned the 9 different target sizes into large, medium 
and small targets.  

Our analysis shows that larger targets result in a slower rate 
of learning, as compared to smaller targets; i.e.. target size 
has a significant interaction with the rate of learning 
(p=0.02). Therefore, while the largest targets were optimal 
for engagement, they do not appear to be optimal for 
learning.  

 
Figure 7: Learning curves show players’ learning (reduction 
in error) over 30 items. The model suggests that larger and 

easier targets produce a slower rate of learning in comparison 
to the smaller and more challenging targets.  

Limitations 
There are several limitations to our approach. For instance, 
one could argue that there is a different kind of learning 
occurring when estimating large and small targets, making 
this a comparison of apples and oranges. Secondly, our 
claims are only meaningful for players who played for >30 
trials—and this may represent a particular subset of the 
population that does not generalize more broadly. Finally, 
the high rates of attrition in online experiments make this 
comparison subject to critique. For example, we found that 
low ability students had a significantly steeper learning 
curve (p=0.002) than high ability students; if there were a 
greater proportion of low ability students in the small and 
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medium conditions, this might suggest that the effect 
occurred as result of selective attrition. In this case, 
however, the proportion of low-ability students differed 
across conditions by only 2 percentage points—a difference 
too small to account for our reported effect. The above 
critiques notwithstanding, our preliminary evidence 
suggests that the easiest targets, which were optimal for 
engagement, were not optimal for learning.  

DISCUSSION 
In two experiments, we systematically manipulated the 
design space of an online learning game to determine the 
optimal level of challenge for supporting maximum 
engagement. In contrast to the Inverted-U hypothesis, 
which predicts that a moderate level of challenge should 
lead to maximum engagement, we found that the easier the 
game, the longer people played. This is a surprising finding, 
given the substantial amount of theory [4,9,8,11,20] and 
evidence [1,3,7,17] that suggests that moderate levels of 
challenge will lead to greater motivation.  

It is possible that, despite our efforts, we never made the 
game easy enough. The Inverted-U hypothesis could still 
stand if the theoretically optimal success rate is very high 
(>90%)—in that case, we may not have observed the 
negative effects of decreasing challenge because we lacked 
sufficient data in this area of very high performance. In 
many video games, for instance, the vast majority of user 
actions are rewarded, with only an occasional setback.  

Still, past researchers predicted and observed much lower 
optimal success rates. For instance, Atkinson [3] predicted 
that motivation would be greatest when the uncertainty of 
success is highest (i.e., a 50% probability of success). 
Shapira [16] predicted that the optimal success rate would 
be even more difficult, from 25-40% probability success 
depending upon individual differences. Furthermore, 
Csikszentmihalyi’s online chess study [1] found that chess 
players reported greatest enjoyment when their probability 
of success was approximately 20% (i.e., facing opponents 
with a chess rating 262 points greater than their own). 

Differences Between the Studies 
If online chess players find a 20% success rate most 
enjoyable, why might our game produce greatest 
engagement with far less objective challenge? There are 
many differences between the present study and the online 
chess study that may account for this difference.  

Random Assignment: While we randomly assigned players 
to a particular game configuration, participants in the online 
chess study freely chose their opponents. Feedforward: 
While the chess players were given information about their 
game’s challenge (i.e., the ranking of their opponent) prior 
to playing, our players were not given information 
indicating the amount of difficulty they were encountering. 
Status Opportunities: While the chess players could 
improve their chess ranking by beating more advanced 
players, our game provided no opportunity to improve 

one’s status. Measure of Challenge: Their study measured 
challenge using self-report and the difference of chess 
rankings between players. The difference in chess rankings 
corresponds to a probability of success (e.g., players with 
identical rankings have a 50% probability of success). Our 
study quantified challenge not as the probability of 
successfully winning a game, but of the probability of 
hitting individual targets. Measure of Enjoyment/ 
Motivation: Their study modeled the effect of challenge on 
self-reported enjoyment while our study modeled the effect 
of challenge on engagement (the duration of play). 
Engagement may or may not correspond to enjoyment. 
Population Characteristics: Their players were older than 
our players and their players likely had greater expertise in 
chess than our players had expertise in Battleship 
Numberline.  

Theoretical Hypotheses and Design Implications 
Given these broad differences between the studies, we now 
propose four concrete hypotheses that can add explanatory 
value and suggest implications for design. 

Effectance Motivation Hypothesis 
Our players were clearly motivated by success—the more 
successful they were, the more motivation they had to keep 
playing. The idea that success will increase motivation is 
predicted by the Effectance Motivation hypothesis [8]. A 
key implication of this hypothesis is that increasing player 
success rates is likely to increase player motivation. While 
one might accomplish this by making the targets even 
larger, the player might attribute their success to the game, 
rather than to their own achievement. Therefore, we predict 
that increasing success will have a greater effect on 
engagement if it results from a mechanism that players can 
attribute to their own competence. For instance, the game 
could improve performance by increasing in-game learning 
(which is, after all, the goal!). This improved learning could 
occur through explicit in-game instruction (e.g., a tutorial) 
or by providing more informative feedback (such as 
labeling each prior attempt, as in the constructive feedback 
described in Malone [12]).  

Expertise Hypothesis 
There is ample evidence that some groups of people 
demonstrate strong “challenge-seeking” behaviors (e.g., 
rock climbers, chess players, and video gamers). Perhaps 
challenge-seeking only tends to occur after individuals have 
acquired some significant level of expertise. Therefore, 
perhaps we did not observe the inverted-U because the 
players of our online game likely had little prior experience. 
This hypothesis predicts that player expertise will interact 
with the effect of challenge on player engagement, 
producing an inverted-U for players with high expertise, but 
not for low expertise players (who would be expected to 
prefer very low levels of challenge One implication for 
design from the Expertise Hypothesis is to make the first 
level of the game as easy as possible, and introducing 
greater challenges only after some degree of expertise has 
been attained.  
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Feedforward Hypothesis 
Models of achievement motivation predict that people will 
attribute more value to success when the task is more 
challenging [1,8,9]. However, players did not have any 
information about the challenge of their particular game 
configuration (other than observations of their own 
performance). This is a key difference from the online chess 
study, where players knew their opponent’s international 
chess ranking. 

Therefore, an implication for design is to provide 
feedforward to players about the challenge of the task they 
are playing. This may allow players to more appropriately 
value their success and failure in the face of challenge.  

Close Game Hypothesis 
Abuhamdeh and Csikszentmihalyi’s hypothesis [1] about 
“close games” may help explain our results. They 
hypothesize that a player’s motivation will increase during 
close games, when there is high uncertainty about winning 
or losing. However, this kind of uncertainty does not occur 
in Battleship Numberline, as the game does not indicate to 
players whether they have won or lost (players can continue 
to play for as long as they like). Without winning or losing, 
there can be no close games. Additionally, close games 
only occur when the challenge of the game is closely 
matched to the player’s ability. In other words, players with 
greater ability may find challenging games more engaging 
when the challenge increases their uncertainty about 
winning or losing.  

The Close Game Hypothesis predicts that a clear win/lose 
state should make challenge motivating when the 
winning/losing criterion is closely matched to player’s 
ability. As the performance criterion approaches a player’s 
performance capacity (and when the outcome is most 
uncertain), the player is predicted to experience greatest 
motivation. 

CONCLUSION 
Our research investigated the effects of various game 
design factors on challenge, motivation and learning. While 
we hypothesized that moderate levels of challenge would 
maximize engagement (the inverted-U hypothesis) we 
instead observed that the easier the game, the longer people 
played. This is a surprising finding that prompts new 
research questions. For instance, given that the most 
engaging conditions were not the most optimal for learning, 
we can investigate methods for jointly optimizing learning 
and engagement. From a design perspective, we can 
investigate game design patterns that support challenge-
seeking behavior, as players in more challenging conditions 
may benefit from a faster pace of learning.   

This study contributes one approach to harnessing the 
crowd to optimize game designs. We used a large-scale 
factorial experiment and thousands of online users to 
identify which configuration of game design factors best 
supported player engagement; the same approach can be 

used to identify the optimal designs for supporting player 
learning.  

Limitations 
One limitation of our study was that it was susceptible to 
self-selection effects: it was relatively common for players 
to abandon games and start again, where they would be 
placed in a new experimental condition. This suggests that 
players may have deliberately exited a less preferred 
condition to find a more preferred condition. Though this 
self-selection was not intended, since the main goal of our 
study was to measure how design factors affected player 
motivation, it seems unlikely to alter our main results.  

Still, online game experiments are highly limited by the fact 
that the data collected are from anonymous and remote 
subjects. This means that researchers have a very limited 
capacity to gain qualitative insight into why subjects are 
responding the way that they do. This suggests the 
importance of triangulating findings between online 
experiments and laboratory or field studies [20]. For 
instance, we may discover that “duration of play” does not, 
ultimately, sufficiently correlate with player enjoyment. 

Our operational definition of challenge is also subject to 
critique. We defined the challenge of a particular level 
configuration as the inverse of its predicted success rate. 
Success rate has been used as a measure of challenge in 
previous research [3,17,7,8,9] and it is similar to the notion 
of a difference in chess ranking in [1] (since this difference 
corresponds to a probability of success). Still, there is 
evidence that perceived challenge is a greater predictor of 
enjoyment [7,1] than objective challenge. This may reflect 
the fact that the objective measure of challenge does not 
adequately capture the feeling of effortfulness that is 
associated with the perception of challenge.  

Future Work 
Perhaps increasing objective challenge (lowering 
probability of success) is simply not desirable to many 
game players. Interestingly, challenge is often correlated 
with increased gameplay diversity; a feature that we found 
to be a highly engaging. As increased gameplay diversity 
can outweigh the negative effects of challenge (as was the 
case in the “all items” level), it will be important to 
carefully separate these two variables in future research.  

Future work should also address the validity of the 
operational definitions of challenge and engagement. The 
promise of online game research relies on valid metrics 
obtained in the context of anonymous gameplay. For 
instance, is the maximization of motivation/engagement, 
measured as voluntary time on task, appropriate as a data-
driven game design goal? This question is particularly 
important for applied research goals, which seek to 
maximize outcome measures like engagement or learning. 
Future applied research may also investigate more efficient 
experimental designs, to minimize the cost of 
experimentation to designers and game players. 
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Very large numbers of voluntary participants gives online 
game research the potential to significantly expand theories 
of human learning and motivation. The implications for 
design in our discussion (in-game tutorials, feedforward 
about challenge, easy first levels and winning/losing states) 
are very standard design patterns that are widely used in 
games. However, by framing these game design elements as 
embodiments of a specific theoretical hypothesis, we can 
use them to test or extend theories of motivation. Therefore, 
it may be fruitful to systematically explore well-known 
game design patterns in order to generate additional 
hypotheses.  
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